Course title	Code No.
Data science and machine learning applications in	
management	

Semester	Course status (mandatory or optional)
1st semester	Mandatory

Lecturer(s)	E-Mail
Marko Valčić	mvalcic@unizd.hr

Contact hours per week	Credit Points	Workload		
2+1	5		Presence	Self-study
		Lecture	30	60
		Seminar		30
		Practice	15	
		Laboratory		
		Simulator		

Media	Teaching aids
Overhead projector, white board, PC/laptop, graphic tablet, software	Presentations (ppt/pdf), references (pdf), video
environment for data science and	materials (mp4), e-learning
machine learning (MATLAB, Python)	materials (online), small group work.

Enrolment requirements and entry competences required for the course **None.**

Conditions for permission to take the exam

Completed/solved exercises/problems and successfully presented seminar paper.

Assessment methods and criteria

Assessment is carried out by means of evaluation of: Seminar paper and presentation (35 %) Written exam (35 %) Final (oral) exam (30 %)

Learning outcomes at the programme level to which the course contributes

Students should be able:

 to critically discuss the mechanisms that underlie digital and industrial transformations and technical changes as well as their implications on development and society

- to evaluate theoretical and applicative concepts and current research from the field of data science and machine learning for dealing with industrial engineering and management problems
- to recognize the capabilities and challenges of data science and machine learning models and systems,
- to communicate effectively in a multi-cultural environment.

This module is suitable for study programs in technical universities dealing with data science, machine learning and deep learning applications, Industry 4.0, and industrial and engineering management.

Content

- Introduction to data science, machine learning and deep learning. Concepts, terminology and application areas.
- Machine learning and deep learning topics. The impact of machine learning and deep learning on technology and society.

- Data-driven modelling vs first principle modelling. Predictive models and learning from data.
- Scoping and managing machine learning initiatives and projects. Building and developing machine learning projects in industry.
- Digitization and digitalization. From digital transformation to semiautonomous and fully autonomous systems. Artificial intelligence (AI) and Industry 4.0.
- The Internet of Things (IoT). Cyber-physical systems and emerging technologies. Advanced data analytics.
- Industry 4.0 and associated concepts: Management 4.0, Logistics 4.0, Supply Chain 4.0, Predictive maintenance 4.0, Maritime 4.0. Trends and perspectives.
- From data to decisions: descriptive, diagnostic, predictive and prescriptive approaches. Data analytics workflow.
- Data preparation: importing, cleaning, aggregation, big data handling, reduction, transformation, discretization, feature extraction, visualization.
- Machine learning methods in a nutshell. Supervised and unsupervised learning. Regression and classification. Clustering.
- From linear and logistic regression to neural networks. Programming languages and software environments for data science and machine learning.
- Building the machine learning model.
- Machine learning vs. deep learning. Deep learning methods in a nutshell. Applications in engineering and management.
- Beyond machine and deep learning. Reinforcement learning. Applications in engineering and management.
- Sensitivity and uncertainty analysis of machine and deep learning models. Risk analysis.

Literature

- Sharda, R., Delen, D., Turban, E. (2020). Analytics, Data Science, & Artificial Intelligence: Systems For Decision Support, 11th Ed. Pearson Education, Inc., Hoboken, NJ, USA.
- Kroese, D.P., Botev, Z.I., Taimre, T., Vaisman, R. (2020). Data Science and Machine Learning: Mathematical and Statistical Methods. CRC Press, Taylor & Francis Group, Boca Raton, FL, USA.
- Somogyi, Z. (2021). The Application of Artificial Intelligence: Step-by-Step Guide from Beginner to Expert. Springer Nature, Cham, Switzerland.
- Kordon, A.K. (2020). Applying Data Science: How to Create Value with Artificial Intelligence. Springer Nature, Cham, Switzerland.
- Hudgeon, D., Nichol, R. (2020). Machine Learning for Business: Using Amazon Sagemaker and Jupyter. Manning Publications Co., Shelter Island, NY, USA.

- Reagan, J.R., Singh, M. (2020). Management 4.0: Cases and Methods for the 4th Industrial Revolution. Springer Nature Singapore Pte Ltd., Singapore.

Amendment Log			
Version No.:	Date:	Changes:	Name:
1.0	1 April 2021	1st version	Marko Valčić